财务会计中的插入法(又叫插值法、内插法)的原理是根据比例关系建立一个方程,然后,解方程计算得出所要求的数据。例如:假设与A1对应的数据是B1,与A2对应的数据是B2,现在已知与A对应的数据是B,A介于A1和A2之间,则可以按照(A1-A)/(A1-A2)=(B1-B)/(B1-B2)计算得出A的数值,会计考试时如用到年金现值系数及其他系数时,会给出相关的系数表,再直接用内插法求出实际利率。
通俗地说,插值法就是假设内部收益率和净现值是成线性关系,就是说已知内部收益率变化多少,乘以一个系数之后就可以知道净现值变化多少了。那么就用小的就好像已知两个人每天吃十个馒头,问五个人一共吃多少馒头?只要求出每个人吃五个馒头就迎刃而解了。内插法也是这个道理:一个收益率得出正净现值,一个收益率得出负净现值,那么内部收益率使得净现值为零,一定在这两个收益率中间。那个系数是多少呢?两个净现值之差除以两个收益率之差。大的净现值和零的差乘以这个系数,就是小的收益率和内部收益率的差,再加上小的收益率,就得出内部收益率了。先写这么多,不明白再追问吧。
插值法又称"内插法",是利用函数f (x)在某区间中插入若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
举个例子:年金的现值计算公式为 P=A*(P/A,i,n) 此公式中P,i,n已知两个便可以求出第三个(这里的i便是您问题中的r)所以,当已知P和n时,求i便需要使用插值法计算。 您提出问题的截图是一般算法,解出以上方程太过复杂,所以需要插值法简化计算。例: P/A=2.6087=(P/A,i,3)查年金现值系数表可知r P/A8% 2.5771所求r 2.60877% 2.6243插值法计算: (8%-7%)/(8%-r)=(2.5771-2.6243)/(2.5771-2.6087)求得 r=7.33%以上为插值法全部内容举例说明,除此之外复利的终值与现值、年金的终值都可以使用插值法求的利率或报酬率。
插入法的拉丁文原意是“内部插入”,即在已知的函数表中,插入一些表中没有列出的、所需要的中间值。
若函数f(x)在自变数x一些离散值所对应的函数值为已知,则可以作一个适当的特定函数p(x),使得p(x)在这些离散值所取的函数值,就是f(x)的已知值。从而可以用p(x)来估计f(x)在这些离散值之间的自变数所对应的函数值,这种方法称为插值法。
如果只需要求出某一个x所对应的函数值,可以用“图解内插”。它利用实验数据提供要画的简单曲线的形状,然后调整它,使得尽量靠近这些点。
如果还要求出因变数p(x)的表达式,这就要用“表格内插”。通常把近似函数p(x)取为多项式(p(x)称为插值多项式),最简单的是取p(x)为一次式,即线性插值法。在表格内插时,使用差分法或待定系数法(此时可以利用拉格朗日公式)。在数学、天文学中,插值法都有广泛的应用。