Black-Scholes(BS)模型是用于计算欧式期权价格的一种数学模型。它基于一些假设,包括市场是有效的、资产价格服从几何布朗运动、无套利机会等。
BS模型的期权定价公式如下:
C = S * N(d1) - X * e^(-r * T) * N(d2)
P = X * e^(-r * T) * N(-d2) - S * N(-d1)
其中,C 表示看涨期权的价格,P 表示看跌期权的价格,S 表示标的资产的当前价格,X 表示期权的行权价,r 表示无风险利率,T 表示期权的剩余期限(年数),N(d1) 和 N(d2) 分别表示标准正态分布函数中对应的值。
公式中的 d1 和 d2 计算如下:
d1 = (ln(S / X) + (r + * σ^2) * T) / (σ * sqrt(T))
d2 = d1 - σ * sqrt(T)
其中,ln 表示自然对数,σ 表示标的资产的波动率。
需要注意的是,BS模型是基于一些假设和前提条件的,实际市场中可能存在偏离这些假设的情况。此外,BS模型对于欧式期权适用,对于其他类型的期权可能需要使用其他定价模型。
在使用BS模型计算期权价格时,需要输入标的资产价格、行权价、无风险利率、剩余期限和波动率等参数。同时,该模型只是对期权价格的一个估计,实际的市场价格可能会受到供需关系、市场情绪和其他因素的影响。因此,在实际应用中,投资者应该结合市场情况和其他分析工具,进行综合评估和决策。
Black-Scholes-Merton期权定价模型(Black-Scholes-Merton Option Pricing Model),即布莱克—斯克尔斯期权定价模型。 B-S-M定价公式 C=S·N(d1)-X·exp(-r·T)·N(d2) 其中: d1=[ln(S/X)+(r+σ^2/2)T]/(σ√T) d2=d1-σ·√T C—期权初始合理价格 X—期权执行价格 S—所交易金融资产现价 T—期权有效期 r—连续复利计无风险利率 σ—股票连续复利(对数)回报率的年度波动率(标准差) N(d1),N(d2)—正态分布变量的累积概率分布函数,在此应当说明两点: 第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年计息一次,而r要求为连续复利利率。r0必须转化为r方能代入上式计算。两者换算关系为:r=LN(1+r0)或r0=exp(r)-1例如r0=,则r=LN(1+)=,即100以583%的连续复利投资第二年将获106,该结果与直接用r0=计算的答案一致。 第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则T=100/365=。
全称Black-Scholes期权定价模型针对欧式期权。看涨期权定价公式:C=S·N(D1)-L·E-γT·N(D2)看跌:P=L·E-γT·[1-N(D2)]-S[1-N(D1)]具体看
BS模型的全称Black-Scholes期权定价模型。该模型是由费希尔·布莱克(Fisher Black)和默顿·斯库尔斯(Myron Scholes)在1973年提出的,用于计算欧式期权价格。Black-Scholes模型假设:期权价格的波动率是恒定不变的;期权价格的收益率是连续的,且符合随机游走过程;期权到期日前,期权价格的收益率与标的资产的价格收益率之间存在一定的相关性。Black-Scholes期权定价模型的数学公式为:C = SN(d1) - Ke(-rt)N(d2)P = Ke(-rt)N(-d2) - SN(-d1)其中:C表示欧式看涨期权价格;P表示欧式看跌期权价格;S表示标的资产的现价;K表示期权的行权价;t表示期权到期时间;r表示无风险利率;d1和d2是根据上述假设计算出来的中间变量,具体公式为:d1 = (ln(S/K) + (r + σ^2/2)t) / (σ√t)d2 = d1 - σ√t其中,σ表示标的资产的波动率,N表示标准正态分布的累积分布函数。Black-Scholes模型是基于一系列假设和前提条件建立的,实际情况可能存在偏差。因此,在使用该模型进行期权定价时,需要对实际情况进行合理的调整和修正。