方差是各个数据与平均数之差的平方的和的bai平均数,公式为:
其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s^2就表示方差。
方差的概念与计算公式,例如两人的5次测验成绩如下:X: 50,100,100,60,50,平均值E(X)=72;Y:73, 70,75,72,70 平均值E(Y)=72。平均成绩相同,但X 不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。
扩展资料
平方差:a²-b²=(a+b)(a-b)。文字表达式:两个数的和与这两个数的差的积等于这两个数的平方差。此即平方差公式
标准差:标准差=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n)。是离均差平方的算术平均数的平方根,用σ表示。
方差公式:
标准方差公式(1):
标准方差公式(2):
例如: 两人的5次测验成绩如下:X: 50,100,100,60,50,平均值E(X)=72;Y:73, 70,75,72,70 平均值E(Y)=72。
平均成绩相同,但X 不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为E(X):直接计算公式分离散型和连续型。
推导另一种计算公式得到:“方差等于各个数据与其算术平均数的离差平方和的平均数”。其中,分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。
扩展资料:
性质:
1、设C为常数,则D(C) = 0(常数无波动);
2、D(CX )=C2D(X ) (常数平方提取,C为常数,X为随机变量);
证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)
3、若X 、Y 相互独立,则,证:记
前面两项恰为 D(X )和D(Y ),第三项展开后为
当X、Y 相互独立时,故第三项为零。特别地独立前提的逐项求和,可推广到有限项。